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The Brownian motion of a particle over a potential barrier, a problem first 
solved by Kramers, is reexamined also for the case of "intermediate" friction, to 
which Kramers'  solutions do not apply. The theory is macroscopic and entirely 
based on the Langevin equation of the particle, but it makes essential use of 
ideas of a recent microscopic theory of Grabert and of Pollak, Grabert, and 
H~inggi for a particle coupled to an infinite set of harmonic oscillators. Their 
result for the escape rate is recovered, but the present method seems more 
generally applicable. We introduce and use a new theoretical tool-- the transfor- 
mation to a new set of variables mixing the macroscopic and the noise variables 
of the Langevin equation. 
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1. I N T R O D U C T I O N  

The escape of a particle from a potential well via Brownian motion was 
treated in a classic paper by Kramers. (1) Kramers' theory is macroscopic, 
being based on the Langevin equation, or the stochastically equivalent 
Fokker-Planck equation, of a Brownian particle with a phenomenological 
unretarded friction coefficient and a fluctuating force whose strength is 
determined by a fluctuation-dissipation relation. In Kramers' work a solu- 
tion of the escape problem for moderate to large friction and for very weak 
friction was given, but the turnover from very weak to moderate friction 
was not treated by his theory. We cannot mention here the immense 
literature following up on Kramers'  work (for reviews see ref. 2), but we 
mention the generalization of Kramers'  work including memory effects by 
Grote and Hynes (3) and a recent attempt to tackle the turnover problem by 
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Mel'nikov. (4) Both developments were made within the macroscopic 
framework also used by Kramers. 

The escape problem can be reformulated within a microscopic model 
by replacing the phenomenological friction and fluctuation terms by a 
coupling of the Brownian particle to a reservoir of harmonic oscillatiors. (5) 
In a remarkable development it was shown in a series of recent papers by 
Pollak, (6/Grabert, (7) and Pollak et al. (s~ that the escape problem including 
memory effects could be solved within the microscopic model also in the 
turnover region. (v'8) In fact, the final result for the escape rate found in 
refs. 7 and 8, while differing in certain respects from Mel'nikov's result, is 
independent of the microscopic details of the model; still, the microscopic 
formulation of the theory has been indispensable in arriving at this result. 
This is a strong indication that a completely macroscopic theory including 
memory effects should exist even in the turnover region. It seems desirable 
to develop this theory and thereby proove the model independence of the 
microscopic result. 

This is the purpose of the present paper. A further motivation is the 
hope that one may apply such a macroscopic theory to versions of the 
escape problem which are not easily modeled on a microscopic level, e.g., 
in systems far from thermal equilibrium where a simple fluctuation-dissipa- 
tion theorem does not exist. 

For the sake of clarity we treat the case without memory first and 
include memory effects in the final section. The Langevin equation without 
memory is formulated in Section 2 and solved near the top of the potential 
barrier in Section 3. Central notions of the theory, the unstable mode and 
its energy, are introduced in Section 4 and their relation to the escape rate 
explained in Section 5. Kramers' results for moderate to large friction are 
recovered in Section 6. The nonlinear equations of motion for the unstable 
mode are derived in Section 7 and solved for the escape rate in Section 8. 
Dissipation with memory is treated in the final section. 

2. LANGEVIN  EQUATION 

We consider a particle of mass one in one dimension with coordinate 
q ( - o o  < q <  oc) in a potential well U(q) with a local minimum at 
q = qm < 0 and a local maximum at q = 0. An example is the potential 

(3 )  
U ( q ) = - 6 q Z  q - ~ q . ,  (2.1) 

with a > 0. We assume that the motion of the particle is subject to a 
frictional force proportional to its velocity. For simplicity, we assume in the 
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following that retardation of the friction is negligible, but we shall com- 
pletely include retardation effects in Section 9. Furthermore, let the particle 
be subject to a stochastic force which we assume to be Gaussian and white 
in the frequency domain of interest. Such a force is inevitably present due 
to the fluctuation-dissipation theorem if the particle moves in a thermal 
environment, but in other cases the stochastic force might also have some 
other physical origin. With the assumptions made, Newton's equation of 
motion of the particle reads 

+ 7~r + ~ = ~(t) (2.2) 0 

with the friction rate 7 and the stochastic Gaussian force ~(t) satisfying 

(r =0  
(2.3) 

( { ( t )  {( t ' )  ) = Oa(t - t') 

In the case of thermal fluctuations we have 

Q = 2ykB T (2.4) 

In the case of nonthermal fluctuations we may use Eq. (2.4) to define T as 
the equivalent noise temperature. In the following we shall always assume 
that the potential well is deep in the sense that 

A U =  U(O) - U(q,~) ~> k ,  T (2.5) 

Kramers posed and to a large extent answered the question of what the 
average rate is at which a particle injected near the bottom of the potential 
well escapes from the well over the potential barrier. (1) 

In the following we present a new method of solution of this important 
problem also covering the case of intermediate friction not solved by 
Kramers, but recently solved (7'8) for a microscopic model (s) from which 
Eq. (2.2) can be derived. Our method is macroscopic in the sense that only 
the Langevin equation is used in it. However, it uses in an essential way 
ideas of the above-mentioned microscopic approach ~ 8) to the Kramers 
problem. 

3. SOLUTION NEAR THE TOP OF THE POTENTIAL BARRIER 

Sufficiently near the potential barrier at q = 0 the potential U(q) may 
be written as 

(.0 2 

U ( q ) = -  2-2q z (3.1) 
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Therefore, near q = 0  the Langevin equation (2.2) becomes linear and is 
easily solved by 

q(t) = Ae 71, + Be-72' 

f~ dt, e -72(' " ) - e  7~(t-,') + ~(t') (3.2) 
71 --72 

with 

7 (72 \ 1/2 
71,2 ~--- ~ "J- ~- J- (O~) (3.3) 

and the constants of integration A, B, which may be expressed in terms of 
the initial values q(0) = qo, 0(0) = 0o, where qo must be near q = 0: 

A = -(72qo q- 0'o)/(71 - 72) 

B = (7~qo + 00)/(7, - 72) 
(3.4) 

We note that according to Eq. (3.3), 72<0. Therefore, q(t) as given by 
Eq. (3.2) contains a growing component which we denote by q>(t). If for 
qo<0  the amplitude of the growing component is positive, the particle 
passes the barrier at q = 0 and leaves the potential well. 

Next we extract the growing part of q(t). This can be done by taking 
the Laplace transform of q(t), 

q(P) = e-P'q(t) dt, Re(p) > 172[ (3.5) 

It is useful to define the Laplace transform of 

~(p) = f :  e Pt~(t) dt (3.6) 

which is in fact a stochastic integral 

( (p)  = f :  e -P' dw(t) (3.7) 

with 

dw(t) = ~(t) dt, ( (dw(t))  2) = Q dt (3.8) 
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We note the properties 

~(p) Gaussian 

,(C(p)> =o  

{~(p) ~ ( p ' ) ) -  Q 
p+p' 

{~(p) r = Qe-mO(t) 

(3.9) 

Then we may write the Laplace transform of Eq. (3.2) as 

7, q0 + qo + ~(P)] (3.10) 1 72qo + qo + ~(P) t- 
O(P) 7,+ 17~1 p + 7 ,  -p~- ~1 3 

The growing part q> (t) of q(t) can now be easily identified as the singular 
part of t~(p) for Re(p) > 0, 

1 ~lqo+0o+ C(17~l) 
0>(p)= - -  

. (3.11) 
7a q0 + qo + ~(lY21) el.yzl, q>(t) - 

71 + l~l 

Hence, a particle leaves the potential well if and only if 

C)o + 71qo + ~([721) > 0 (3.12) 

4. T H E  U N S T A B L E  M O D E  A N D  ITS E N E R G Y  

We now borrow a trick invented in refs. 6 and 7 in the framework of 
a microscopic description of the present problem. This trick, at first glance, 
seems much more natural in the microscopic context, but, as we shall see, 
it is equally useful here. The trick consists in defining the unstable normal 
mode of the system near the barrier and its energy. This may seem 
impossible in the present case in view of the dissipative and irreversible 
behavior of the underlying dynamics. However, we note that a normal 
mode u(t) with conserved energy E and containing the growing part q>(t) 
can be easily defined by writing 

~u(t) =- �89 + qo + C(1~'21 )) e1721t + �89 e-1"/21' (4.1) 

where ~ is a positive nOrmalization constant to be fixed later and C 



680 Graham 

remains presently undetermined. In general C is fixed by the initial condi- 
tion posed for u. We note that u(t), as defined by Eq. (4.1), satisfies 

//-17212 u=O (4.2) 

with the conserved energy 

1 . 2  1 E =  7u - ~ 1~212 u 2 = �89 + 1~21 u ) ( ~ -  t~21 u) (4.3) 

To summarize, the normal mode u(t) has the following remarkable proper- 
ties: 

(i) It satisfies a deterministic equation of motion (i.e., ~ does not 
appear in its equation of motion). 

(ii) It determines uniquely the growing part q>(t) of the particle 
coordinate near q-= 0 by 

q>(t) = Y~ + 172------~ 

An exponential growth of q>(t) to positive values corresponds to an 
exponential growth of u(t) to positive values and vice versa. 

(iii) Near the barrier at q = 0 the normal mode u is decoupled from 
the nongrowing part 

q~( t )=q( t ) -q>( t )  (4.5) 

(iv) Near q = 0 its energy E is conserved. 

(v) Its energy E has the usual kinetic part, with the effective mass 
still normalized to 1 by the choice of ~ in Eq. (4.1), and a potential energy 
part which describes a harmonic energy barrier at u = 0. 

(vi) By (ii) and (v), the region u > 0 corresponds to the outside, and 
the region u < 0 corresponds to the inside, of the potential well. 

For some purposes (e.g., in Section 6) it is convenient to fix the 
constant C in Eq. (4.1) by demanding that u(t) transforms even under time 
reversal, 

t-"~ - - I  

q ~ q  

4--' - q  
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To implement this requirement, we decompose the Gaussian noise ~(t) into 
two independent noise sources ~ +, 4 -  of equal strength, 

~(t) = 4+( t )  + 4 _ ( t )  

(4 +(t) ~+( t ' ) )  = (~_( t )  ~_ ( t ' ) )  -- �89 t'); 

(4 .6)  

( 4 + ( 0  ~ ( t ' )  = 0  

(4.7) 

which transform even and odd under time reversal, respectively, 

Then the Laplace transforms (+(p),  ( ( p )  of ~+, ( are statistically inde- 
pendent and transform odd and even under time reversal, respectively. 

With these prescriptions C is completely fixed and we may write, with 
u(0)  = Uo, ~ (0 )  = ~o, 

with 

C~Uo = ~q o  + C_(I~21) 
(4.8) 

~(+(1721)> = <~-(1~21)> =o 

<:+(I~21) 4_(1~21)) =o  
Q 

4 [~2E 

(4.9) 

5. A G E N E R A L  F O R M U L A  FOR T H E  ESCAPE RATE 

Our goal is the determination of the average rate of the escape of the 
particle over the potential barrier. 

If each particle crossing the barrier at q = 0 with positive velocity 0 > 0 
would actually escape, the average rate of escape would be simply given by 
the average current (number of particles per time) across q = 0 with 0 > 0, 

~= ~ P(O, O) 0 dO (5.1) 

where P(q, gl) is the phase-space density of the particle. However, due to 
the action of stochastic forces, there is a certain probability that even after 
a particle has passed q = 0 with c)> 0 it suffers a random kick which sends 
it back to the potential well. This recrossing probability in general 
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invalidates (5.1) as a rigorous equation and makes the actual escape rate 
F smaller than ['. 

As first noted in ref. 7, the recrossing problem has a very elegant solu- 
tion if F is expressed in terms of the probability current of the unstable 
normal mode u. The reason is that near the top of the potential barrier, u 
satisfies a deterministic equation. Hence, if u has passed the top of the 
barrier at u = 0  in positive direction (fi~>0), it is impossible, within the 
linearized description valid near the top of the barrier, that recrossing 
occurs. Therefore, up to exponentially small terms due to recrossings from 
positive values of u outside the interval of linearity, we have 

F =  f ?  Pu(0, fi) fi d~ (5.2) 

where Pu(u, ti) is the phase-space density of the unstable mode. 
Following Kramers, (1) we are only interested in the case where par- 

ticles are continuously supplied near the bottom of the potential well in 
such a way that the particle escape is precisely balanced on the average. 
Then a time-independent steady state results in which also P,(0, fi) must be 
expressed by the single constant of the motion E, P,(u, fi) = P(E). 

Hence, in the steady state, Eq. (5.2) is reduced to 

r =  fo P(E) dE (5.3) 

From our present point of view this simple expression is the main motiva- 
tion for the definition of the unstable normal mode u in addition to q>. 

It is interesting to note that the expression (5.3) does not depend 
on the normalization constant c~ introduced in Eq. (4.1), as P(E)dE  is 
invariant under rescating of E. Hence, ~ may be chosen arbitrarily for the 
purposes of calculating F. 

6. K R A M E R ' S  ESCAPE T I M E  FOR SUFFIC IENTLY LARGE 
D A M P I N G  

For sufficiently large damping we may assume that the probability 
density of the particle within the potential well comes into equilibrium with 
the noise source. For a sufficiently deep potential well this will always be 
the case for values of q < 0 sufficiently far away from q = 0, but the assump- 
tion breaks down for small dissipation, which therefore requires separate 



Activated Decay of Metastable States 683 

treatment in Section 8. Ignoring this difficulty in the present section, we 
assume that for q < 0 we have the Maxwell-Boltzmann distribution 

Pth(q, gl)=Nexp{--f iI~-+U(q)] }, q < 0  (6.1) 

with fl = 1/k B T, whose normalization factor N is determined by evaluating 
the normalization integral by steepest descent 

C~ofl +~V~qm~ (6.2) N = - ~ e  

1 2 where U(q) = U(q,,) + ~O)o( q -  q,,,)2 + ... near the bot tom of the potential 
well. In order to compute F, we have to determine the distribution P,,(u, fi). 
For this purpose we first specialize Ptt,(q, il) to a small neighborhood of 
q = 0, where it takes the form 

Pth(q, gl)dq d o =~-c~176 [ -  fl (02-co~q2)]  dq dO (6.3) 

In the following we shall identify q, 0, in Eq. (6.3) with qo, 0o in Eq. (4.8), 
which is permitted because Pth is time independent. In order to determine 
the distribution of u, ti, we need the joint distribution of qo, 0o and 
~+(L721), ~ (1721)- As ~_+(172[) depend on ~(t) only for t > 0 ,  these quan- 
tities are assumed to be statistically independent from qo, c)0 and we have 
the joint distribution 

Pth(qo, qo, (+([Y21), ((1~21)) 

= Pth(qo, qo)W(~+([721)) W((-(1721)) (6.4) 

where W(~) is a normalized Gaussian with mean square 7/(2 1~21 f). 
Now we can write 

Puth(U, ~l) = f dq dO d~+ d~_ Pth(q, O, &, & ) 

x 6 ( u  ' l q + ~ - ) ' 5 @  - l y z ~ l ( O + ~ + ) ) a  c~ (6.5) 

The integrals are easily carried out using the 6-functions and well-known 
properties of Gaussian integrals. The result is 

Puth(U, ~t)= (Doff 2a2 exp(--fAU) exp [ 2fa2E ] 
2~ cob(y , + 1721) _ 1~21 (~ ,  + i~'21i_ - P,h(E) 

(6.6) 
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From Eq. (5.3) we obtain for the escape rate 

F coo 172___]1 e_~au (6.7) 
21r co b 

which, as noted earlier, is independent of the choice of , .  However, we note 
that Puth(U, bt) is a Maxwell-Boltzmann distribution at the noise tem- 
perature T only if we choose ~2 as 

0C2 1 =~ 1721 (Ta+ 1721) (6.8) 

Equation (6.7) is, of course, Kramers' result I1) valid for sufficiently large 
damping. In Kramers' treatment the result (6.7) does not follow from a 
thermal distribution (6.3). In fact, using a thermal distribution in Eq. (5.1) 
yields r=(coo/2=)exp(-flAU) (transition state theory), which is not 
correct if 1~'21 and cob differ appreciably. Rather, Kramers' result is obtained 
from 

f +~176 F= Px(O, O) 0 dO (6.9) 
o~ 

with the nonthermal phase-space distribution he derived ~1~ for the region 
close to the top of the barrier 

Px(q, O)= \-~-n~ / -~ (0 - 

x f~  dvexp( /3[721v2)2 7 (6.10) 

where N is given by Eq. (6.2). Below we shall give an alternative derivation 
of this distribution. In PK particle velocities c)< 71q are strongly suppressed 
compared to the thermal distribution, which accounts for the fact that par- 
ticles are mainly concentrated at negative values of q and cross the barrier 
primarily with positive velocities. In our preceding treatment this fact is 
automatically taken into account by Eqs. (5.2), (5.3), where only positive 
velocities fi > 0 enter for u = 0. The generalization of the latter statement for 
u < 0 (but small) is the .restriction fi >~ 1721 u. This inequality specifies the 
smallest domain of phase space (u, ~) near the top of the potential barrier 
which contains the interior of the well (u < 0, Jill < [721 u) and its boun- 
daries and all trajectories coming in from negative values of u(u < O, fi > 0). 
Due to the boundary conditions of the escape problem all other domains 
of phase space must be empty. Thus, instead of Eq. (6.6) it is more 
appropriate to use in thermal equilibrium 

Pu(u, fi) = Pth(g) 0(t)--]721 u) (6.11) 
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where 0 is the step function and Pth(E) remains defined by Eq. (6.6). The 
result (6.7) for F remains, of course, unchange d by this modification. The 
argument of the step function appearing in Eq. (6.11) may be rewritten in 
qo, qo, 4+, 4-  with the help of Eq. (4.8). In fact, it is easy to see that 
Eq. (6.11) is a consequence of Eq. (6.5) if there we use, instead of Pth, the 
modified joint distribution 

PK(qo, glo, 4+,4_)=O(glo--71qo+4+--4_)eth(qo, Oo, 4+,4_) (6.12) 

which is the thermal joint distribution modified by the same step function 
as in Eq. (6.11). On the other hand, integrating the joint distribution (6.12) 
over 4+, 4_ and identifying v = 4 -  - 4+, we immediately recover Kramers' 
distribution (6.10). Thus, apart from rederiving Kramers' distribution, 
we have found the corresponding joint distribution of qo, qo and the 
fluctuating forces 4 + (172 [ ), 4 -  (17 2 [ )- 

7. N O N L I N E A R  C O U P L I N G  OF STABLE A N D  U N S T A B L E  
D Y N A M I C S  

As the escape rate is determined completely by the distribution of the 
energy in the unstable normal mode near the top of the potential barrier, 
it is desirable to introduce the normal mode amplitude u into the equation 
of motion of the Brownian particle. This can be done by separating q(t) 
into an unstable part q>(t) and a stable part q < ( t )  as in Section3, 
Eq. (4.5). Let us also split the particle's momentum in the same manner, 

p(t) = c)(t) = p>(t)  + p<(t)  (7.1) 

We now wish to construct the linear coordinate transformation from q, p 
to q>, q< which applies in the region close to the top of the barrier and 
which is then defined to hold unchanged throughout the particle's phase 
space. This linear transformation will be constructed explicitly in Section 9 
for the case which includes friction with memory. Here we shall give only 
the final result for the special case of friction without memory. It is given 
by Eq. (7.1) with 

p>(t)  = 1721 q>(t) 

p<(t)  = - -Tlq< --ft ~176 dr el~2rCt-*)~(z) 
(7.2) 

It may be seen from Eqs. (7.2) that q<(t) and p<(t), just as q>(t) and 
p > (t) are correlated with the fluctuating force in the future. This should not 
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be surprising: whether  a particle eventually escapes (q> > 0 )  or not  
(q> < 0) depends on the fluctuating force in the future. 

The next goal is to express the equations of mot ion  in q>,  q <, 

~ = p  

D + Tp - coZ q . . . .  
~ U  1 (7.3) 
c~q 

U(q) = U(O)__1 2 2 5c%q + Ul(q) (7.4) 

Again, details of the calculation can be found in Section 9. We obtain 

q> -1721 q> = -U'l(q> + q<) / (7~  + 1721) 

(7.5) 
q< +71q<  = gi(q> + q<) / (? l  1~21)- dr e~'=~"--~)~(~) 

t 

Let us now introduce the unstable mode  u and a new stable variable ~ by 

q> = ~(u + ~/1721) 
(7.6) 

q < = c] + ~(u - u/17=l ) 

with 
4 =  c~/(?l + 172t) (7.7) 

Then Eqs. (7.5) take the form 

/ I -  17212 u = -- 172----L U'I(2~u + c]) (7.8) 

+ ? lq  = --?~(u -- fi/J?2]) -- ft ~~ el~21 ( t ,  O~(z ) (7.9) 

We can solve Eqs. (7.8), (7.9) iteratively for weak coupling between u and 
c]. Here weak coupling means that 

(y/27~)(dln I U~(2au + O)l/dln ~) ~ 1 

i.e., we assume the damping to be sufficiently small and the potential  to be 
sufficiently smooth for this condit ion to be satisfied. To  zeroth order  we 
take ~ = 0 in Eq. (7.8) and obtain the first integral, 

1 1721 
-2 (tim _ 17=1 u 2) + 2-~ U , ( 2 ~ u )  = E (7.10)  

with Ul(q) defined by 
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We note that this expression for E reduces to Eq. (4.3) near the top of 
the barrier, where U1 vanishes. From Eq. (7.10), u(t) for given initial 
conditions can be determined by quadrature. This zeroth-order solution is 
inserted on the right-hand side of Eq. (7.9) and we obtain to first order 

?l(t) = C1 e-71t _1r C2e-]721t 

+ - -  dz(e ~l(t-~)--e -1721('-~)) Ui(2~u(r)) 
71 + ITzl 

-f~ dz f? dz' e-71(t-~)+1721(~-~')~(z ') (7.11) 

with 

-(~176 ) 
C2 = c~ 1~21 - Uo , C1 + C2 = c1(0) (7.12) 

For sufficiently weak coupling, higher order contributions will not be 
needed. 

8. ESCAPE RATE FOR SMALL AND INTERMEDIATE D A M P I N G  

Equations (7.8), (7.9) are similar in form to equations of motion 
recently derived for a Brownian particle coupled to a bath of oscillators by 
Grabert. (7) The main difference consists in the fact that our Eqs. (7.8), (7.9) 
are expressed entirely in terms of the parameters of the basic Langevin 
equation, while Grabert's equations (apart from treating a more general 
model including memory effects, which we shall consider in Section 9) con- 
tain the parameters of the microscopic model. In ref. 7 it was shown how 
a formula for P(E) for a weak and intermediate damping can be obtained 
from the weak-coupling solutions, in our case Eqs. (7.10)-(7.12). The 
method of ref. 7 was invented by Mel'nikov (4) for the calculation of the dis- 
tribution of the total energy of the particle for weak damping and noise. 
We now give a short account of this method and present the final result. 
Consider a particle which comes close to the top of the barrier, but without 
escaping. Let its u energy (7.10) there be E'. After one further round trip 
through the well, let its u energy be E and the conditional probability to 
find that value of E be P(E/E'). In the steady state the distribution P(E) 
must be invariant, 

f 
0 

P(E) = e (E/e ' )  P(e ' )  a~' (8.1) 
- c o  

822/60/5-6-11 
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Following Grabert, (7) we show below [Eqs. (8.8)-(8.15)] that P(E/E') 
takes the form of a Gaussian valid for E, E'  close to zero 

1 P(E/E') ~ exp [ -  (E- E' + AE) 2] 2-G~- [ (8.2) 

where AE is the average loss of u energy after one round trip and ae  is the 
mean-square of the fluctuations of that energy loss. It should be noted that 
the Gaussian form (8.2) was already used by Mel'nikov, (4) but it was 
assumed as an ansatz and not derived in ref. 4. The solution of Eq. (8.1) 
with Eq. (8.2) for E sufficiently far below 0 (E,~ -xf-aE) approaches the 
thermal form, 

Pth(E) --- const �9 e -  (2AE/,~e)e (8.3) 

This form should coincide with the thermal distribution (6.6), i.e., we 
should have 

1~21 (~1+ 1~21) AE (8.4) O'E - -  ~2f l  

which must be verified below, and the normalization constant in Eq. (8.3) 
must be chosen as 

co0fl 2~2e -~zv 
const = - -  (8.5) 

2re ~Ob(?l + 1721) 

With the boundary condition (8.3), (8.5) the integral equation can be 
solved (4"7) and the result be substituted in Eq. (5.3). All Eintegrals are 
carried out by steepest descent. The resulting escape rate is then obtained 
in the form first given by Grabert, (7) 

with 

AE 2c~ 2 
6 - - -  (8.7) 

kBT[72[ (71-t-[72[) 

For  6 >> 1 and 6 ~ 1 the result (8.6) approaches Kramers' results ~1~ for 
sufficiently large and sufficiently small damping,  but it also applies to the 
intermediate region, which was not covered by Kramers' theory. 

It remains to calculate AE and to verify Eq. (8.4). 
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By Eq. (7.10) the time-dependent energy of the u mode is defined by 

1 I~1 Ul(2~u(t ) + ~l(t)) E(t) = 5  [a~(t)-Ir~l 2 u~(t)] + ~-~-~ (8.8) 

Its change AE over one period tp of the u mode is given by the work done 
by the ~ mode, 

at  = ~ ~"~ ar ,~(r) u;(2eu(r) + q(r)) 
Aao~ Jo 

(8.9) 

We evaluate this expression to first order in the (u, ~)coupling, i.e., we 
neglect q in the argument of U'~ and insert the zeroth-order result for u(r). 
Furthermore, assuming that AE does not change rapidly with E', we 
evaluate AE for E ' =  0, i.e., for the u trajectory with tp = ~ starting (at 
t ~ - w ) with u0 = 0, fi0 = 0 and coming back near the top of the barrier 
for t ~  + ~ .  Then At is obtained as the sum of a systematic part 
(the average AE) and a Gaussian noise term, which enters in Eq. (8.9) 
via the additive noise in ~ Eq. (7.9). This proves the Gaussian form (8.2) 
with the average 

1 I + ~  f +~ d E = - ( a t ) = ~ _  dr dr'K(lr-z ' l)  
- -  t x 3  

x U](2gu(r)) U](2~u(r')) (8.1o) 

where 

1~21 (71e_~ M -Ir2l,) (8.11) g(Irl)  = ~-~2 -1~21 e 

Equation (8.t0) can be evaluated if the form of the potential U(q) is 
known. It can be seen from Eq. (8.11) that 6 in Eq. (8.7) a n d / ' i n  Eq. (8.6) 
are independent of the choice of a. The mean square of the Gaussian 
fluctuations of the u energy 

aE= ((At) 2> - (AE) 2 (8.12) 

is obtained in the same approximation. Here only the noise contribution to 
~(r) in Eq. (7.9) enters. We find 

{1~2[~ 2 f+~ f+~ o'e= \2--~J _~ dT - ~  dr' C( [ r -z ' l )  U](2~u(z)) U](2~u(v')) (8.13) 
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with 
d d [ ~  ~, ~ 0o 

x exp[--71(75 A-r ' - 'El- 'C2) -4- 1721 ('~1 "t- Z'2-- T3 --'~4) "] 

Graham 

(8.14) 

Using the ~ correlation of the noise and evaluating the integrals, we find 

1 
c(Iv-~'l)- 

2/3(7a + 17~1) 
(71 e-7~l~-~'l- I~1 e-1~21k~ ~'L) (8.15) 

It can now be verified that aE is indeed given by Eq. (8.4). 

9. F R I C T I O N  W I T H  M E M O R Y  

The method we have presented works also after including dissipation 
with memory. We briefly indicate the generalizations which are necessary. 
For an explicit example see ref. 8. 

The Langevin equation reads 

with 

~U 
q+ d ~ y ( t - Z ) i l ( V ) + ~ q = r  (9.1) 

with 

O>(s)- ((1721) + 0(0) + 71q(0) 
2(s-1721) (9.6) 

2=71 + [72l [1 +d~(172[)/d[721] 

( ~(t) ~(t') ) = kB TT(t -- t') (9.2) 

Near the barrier the Langevin equation can again be linearized and solved 
by Laplace transformation, 

~(s) + 0(0) + Is + ~(s)] q(0) 
O(s)= s2 + ~ ( s ) s _ m  ~ (9.3) 

We define 1721 by the positive root of 

17zt2 + 1721 7([721)- o)~ = 0  (9.4) 

and 71 by ~o 2 = 71 1721. Then we decompose 

O(s) = 0 > (s) + O < (s) (9.5) 
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and 

where 

((s) - ((f72 l) + Is + ~fi(s) - 71 ] q(0) 
2 0 < ( s t  - s ~ + ~(s) s -  o~  

+ K(s)[C(1721 ) + 0(0) + ~a q ( 0 ) l  (9.7) 

1 1 
R(s)=s~ + ;,(s)s-(~ ~(s-1721) (9.8) 

The unstable normal mode u is defined by Eq. (4.1) with q>, [72[, 7~ 
redefined as above. In fact, the results of Sections 4-7 can all be taken over 
using these redefinitions, 7-= ff(t721 ), and the new correlation function of the 
fluctuating forces 

1 ~(s) + ~(s') (9.9) 

Let us now construct a linear transformation from q, p to q>, q<. It is 
most convenient to consider the Laplace transforms. We have, near the top 
of the barrier, 

q(s) = q> (s) + q< (s) (9.10) 

/~(s) = s0 > (s) + sO < (s) - q(0) (9.11 ) 

Equation (9.11) still contains the constant of integration q(0) and is there- 
fore not yet a transformation of coordinates. However, we can eliminate 
q(0) by solving Eqs. (9.6), (9.7) for q(0) and [71q(0)+0(0)+~(1721)] in 
terms of q > (s), q < (s) and inserting the result in Eq. (9.11). We obtain, after 
some algebra, 

t~21 [1 + f ( l ~ 2 1 ) ] ( s -  lv~l) 0> (~) - ~ i ( s -  I~21) q <(~) - ((1721) + ~(s) 
? ( s )  - s + ~(s) - ~1 

(9.12) 

Equations (9.10), (9.12) now define the desired change ofc0ordinates,  
which we extend, by definition, to the entire phase space. Equations (7.2) 
are obtained as special cases for ~(p)= 7. Let us next derive the equations 
of motion satisfied by q >, q <. From ~ = p we obtain 

Es 2 + s~(s) - co~] 0 < (s) + 0 > (s) 

= [ ( s - I T 2 1 )  2] ~>(s )+  ( ( s ) -  ((172t)+ I s +  ~ ( s ) - ~ l ]  qo (9.13) 
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and Eq. (9.1) leads to 

Is ~ + s~(s) - co~] [q ~ (s) + q ~ (s) ] 

= - Ui(s) + ((s) + qo + [s + ~(s)] qo 

with 

Ul(q) = U(q)_.}_150)b q2 _2 _ U(O) 

O's(s) = f ?  dt e-s'U'a(q(t)) 

U'l(q) = dUl(q)/dq 

From Eqs. (9.13), (9.14), we can derive, in real time, 

Graham 

where we used 

(9.14) 

(9.15) 

which follows from Eqs. (9.6), to absorb a constant inhomogeneity in the 
initial condition for q>. Using Eq. (9.16) in the first or second of Eqs. 
(9.13), (9.14), we obtain 

I 1 1 ] O'a(s) 
O<(s)=--  s2+sg(s)_~o~, A(s-1~21) 

if(s)+00+ [s+'2(s)] q0 ((lY21)+Oo+~lqo 
+ s2+s~(s)--~o~ ;~(s--1~'2I) 

(9.18) 

Equations (7.5) are a special case of Eqs. (9.16), (9.18) for ~(s)= 7. 
As in Section 7, it is convenient to make the further change (7.6), 

(7.7), which now read 

~E(s + I~,=1) ~(s)-  u(o)q 
0>(s)= 

b'2l 2 

4<(s)=~(s) ~l-(s-I~l)a(~)-u(O)] 
Phi 

(9.19) 

Here u(0) is an arbitrary constant, connected to the arbritary constant C 
in Eq. (4.1), which enters because (7.6), (7.7) are differential equations. We 
obtain the equations of motion 

q(0) + 71 q(0) + ((]~21) = 2q > (0) (9.17) 

0> - [72[  q> = -U'l(q< +q>)/2 (9.16) 
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/ 2c~u ) 
/i_1~212u - 1~21~ g ,~_2_+  4 

1 
q: --[$2 j- =~)-- 60 2 %L~2"~ ] gt1(S) 2(s 2 -  17212)J 

+((s)+~r I-s+,2(s)] qo ( ( I h l ) + O o + h q o  
S 2 "{- S~)(S) - -  (.0 2 ~ ( S  - -  1"~21 ) 

+ ~l-z~(o) - I'hl u(O)] 
(9.20) 

The further calculation is carried out most conveniently for the Laplace- 
transformed variables and using Eq. (9.9), but otherwise it proceeds as in 
Sections 7 and 8 with essentially the same results, except that now 

AE= - ( A e > =  5 -~  d-cj_oo d ' r 'g( l ' r - r ' l )  U 1 ~ T / /  V 1 

K(lrl)=2ot=O2rtieSm S 2 " ~ S ~ ( S )  - ( ' 0 2  ~'( $ 2 -  JY2[ )J (9.21) 

in agreement with the result of refs. 7 and 8. 

10. C O N C L U D I N G  R E M A R K S  

Equations (8.6)-(8.8), (9.21) constitute the final result, which agrees 
with the result obtained from a corresponding microscopic model in refs. 7 
and 8, but which has been derived here for the first time within a purely 
macroscopic approach. The essential step was the introduction of a normal 
mode amplitude in Eq. (4.1) mixing the particle variables q, 0 and the noise 
source in such a way that a new quantity E appeared which is conserved 
near the top of the barrier. The same normal mode, mixing particle 
variables and bath-oscillator variables, also appears in the microscopic 
calculation. (7,s) Having succeeded in reformulating this idea in a manner 
which is manifestly independent of microscopic detail, we can now proceed 
to apply this method to Langevin equations of more general form. In par- 
ticular, the essential new idea of this paper, the use of variables which mix 
the macroscopic and the noise variables of the Langevin equation, might be 
a useful new tool for their analysis. 
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